Probabilistic Linear Discriminant Analysis for Acoustic Modeling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Linear Discriminant Analysis for Acoustic Modelling

In this letter, we propose a new acoustic modelling approach for automatic speech recognition based on probabilistic linear discriminant analysis (PLDA), which is used to model the state density function for the standard hidden Markov models (HMMs). Unlike the conventional Gaussian mixture models (GMMs) where the correlations are weakly modelled by using the diagonal covariance matrices, PLDA c...

متن کامل

Joint Probabilistic Linear Discriminant Analysis

Standard probabilistic linear discriminant analysis (PLDA) for speaker recognition assumes that the sample’s features (usually, i-vectors) are given by a sum of three terms: a term that depends on the speaker identity, a term that models the within-speaker variability and is assumed independent across samples, and a final term that models any remaining variability and is also independent across...

متن کامل

Feature-space speaker adaptation for probabilistic linear discriminant analysis acoustic models

Probabilistic linear discriminant analysis (PLDA) acoustic models extend Gaussian mixture models by factorizing the acoustic variability using state-dependent and observationdependent variables. This enables the use of higher dimensional acoustic features, and the capture of intra-frame feature correlations. In this paper, we investigate the estimation of speaker adaptive feature-space (constra...

متن کامل

Sparse Probabilistic Linear Discriminant Analysis for Speaker Verification

This paper introduces an approach based on a generative model named Sparse Probabilistic Linear Discriminant Analysis in speaker verification. The model provides an alternative approach to deal with the non-Gaussian behavior of the latent variables, directly assuming they are based on Laplace prior. This distribution encourages the model to set many latent variables to zero. An expectation-maxi...

متن کامل

Tied Probabilistic Linear Discriminant Analysis for Speech Recognition

Acoustic models using probabilistic linear discriminant analysis (PLDA) capture the correlations within feature vectors using subspaces which do not vastly expand the model. This allows high dimensional and correlated feature spaces to be used, without requiring the estimation of multiple high dimension covariance matrices. In this letter we extend the recently presented PLDA mixture model for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Signal Processing Letters

سال: 2014

ISSN: 1070-9908,1558-2361

DOI: 10.1109/lsp.2014.2313410